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Asymptotic and numerical methods are used to analyse periodically forced natural
convection over slowly varying topography. This models the diurnal heating/cooling
cycle in lakes and reservoirs. The asymptotic solution includes the effects of advection
on the temperature. The asymptotic results are confirmed by the numerical results.
The numerical results are also used to examine flow regimes where the asymptotic
results break down. In particular, the presence of a vertical boundary leads to a
permanent stratification in the deeper regions due to a nonlinear pumping process in
the shallows. Heat transfer calculations and two limiting cases are also presented.

1. Introduction
Fluid motion driven by temperature-induced horizontal density gradients is an

important part of the dynamics of lakes and other geophysical fluid bodies. There are
a number of ways that horizontal density gradients can be be generated. For example,
if a spatially uniform surface heat flux is distributed over the local depth in a lake
or reservoir then the shallower regions will heat up more rapidly than the deeper
parts. Simple scaling for flow in typical lake or reservoir (Monismith, Imberger &
Morison 1990) shows that the time for adjustment to a change in the forcing is
typically much longer than a day. In the case where the main thermal forcing is the
diurnal heating/cooling cycle this means that the flow is never in equilibrium with
the forcing. One consequence of this is that the circulation in a reservoir sidearm or
the littoral region of a lake will not be in phase with the thermal forcing; the flow
will be against the prevailing pressure gradient (Farrow & Patterson 1993, hereafter
referred to as FP93). This has been observed in natural lakes by Monismith et al.
(1990) and Adams & Wells (1984).

Geophysical flows have motivated a number of investigations into low-aspect-ratio
rectangular cavities. The classic cubic velocity profile for the steady-state convection
in a long box driven by a density gradient was apparently first derived by Rattray &
Hansen (1962). Hart (1972) showed that this profile was an exact solution for the flow
driven by a density gradient between two parallel infinite plates. Steady convection
in a long box with differentially heated endwalls was considered by Cormack, Leal &
Imberger (1974). There have been a number of studies since then based on steady
flow in a shallow rectangular cavity.

The rectangular cavity is not an adequate model for many geophysical situations
where variable (or sloping) bathymetry has a significant effect on the system. For
example Horsch, Stefan & Gavali (1994) considered the flow down the slope of the
littoral region of a lake due to nighttime surface cooling. Farrow & Patterson (1994)
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Figure 1. Schematic of the flow domain showing the coordinate system and definition
of bathymetry.

considered the corresponding flow during daytime heating. More recently, Lei &
Patterson (2002) conducted a detailed scaling of the daytime heating problem. All
of these studies rely on a sloping bottom boundary to drive a general circulation.
Sturman, Oldham & Ivey (1999) built on Horsch et al.’s (1994) work, considering the
exchange flow between a cooled littoral region and the main water body. Convection
in a variable-depth cavity has also been considered by Poulikakos & Bejan (1983)
where they modelled the fluid motion in an attic space.

All the above studies include either steady-state conditions or steady forcing.
However, as mentioned earlier, the response time of a typical lake is longer than a
day. Thus there is one feature of the diurnally forced case that is not included in the
above studies: the response to unsteady forcing. FP93 report lowest-order asymptotic
and limited numerical solutions for an idealized reservoir sidearm with a triangular
geometry. They included periodic (in time) thermal forcing modelling the diurnal
cycle. They found that the response could be divided into a shallow region where the
flow is in a viscous/buoyancy balance (so the circulation response was in phase with
the prevailing pressure gradient) and a deeper region where the flow is in an unsteady
inertia/buoyancy balance (so the circulation response lagged the pressure forcing).

This paper also considers flows driven by differential heating/cooling associated
with variable topography and the diurnal cycle, building on the results of FP93. The
generalizations here include arbitrary bathymetry, higher-order asymptotic results
and a more comprehensive set of numerical simulations. The numerical simulations
allow an investigation of regions of parameter space where the asymptotic results do
not provide an adequate description of the flow. Extra physics that emerge from the
numerical results include the formation of warm surface and cool bottom currents,
the setting up of permanent stratification by advection in the shallows and a ‘filling
box’ mechanism leading to stratification of the deeper regions.

The structure of the paper is as follows. A model for periodically forced natural
convection is formulated in § 2. An asymptotic solution for the model is found in § 3
based on a small characteristic bottom slope. The validity of the asymptotic solution
is limited, which motivates the numerical simulations of the full model in § 4. The
results of the asymptotic and numerical results are discussed in § 5. Finally, general
conclusions and suggestions for further work are given in § 6.

2. Model formulation and non-dimensionalization
Figure 1 shows a schematic of the model domain. The variable topography is

modelled as z = −Hh(x/L) where H is a scale for the depth and L is a scale for
the horizontal variability of the topography. The function h(.) is arbitrary; however
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it is assumed to be continuous and have bounded derivatives. It will be assumed
later that A= H/L (a scale for the bottom slope) is small. The periodic forcing is
modelled by an internal heating/cooling term in the heat equation. Following FP93
the internal heating term is formulated by taking a periodic uniform surface heat
flux I0 cos(2πt/P ) W m−1, where P is the period of the heating (that is 24 hours), and
distributing it uniformly over the local depth. This choice of the source term means
that t = 0 corresponds to midday, i.e. when the heating is at its most intense. This
ensures that there is a reversal of the pressure gradient during the diurnal cycle.

The uniform vertical distribution of the source term is a considerable simplification
of the heating/cooling mechanisms that occur in natural lakes. For example, during the
day heating occurs mainly near the surface which, in the absence of significant mixing,
leads to a significant vertical structure in the temperature, especially in the deeper
regions. The uniform cooling assumption is more reasonable as surface cooling will
generally generate thermals distributing the heat flux over the local depth. However,
it is difficult to make analytical progress with more general thermal models although
the unsteady daytime heating case has been considered by Farrow & Patterson
(1994) and Lei & Patterson (2002). The focus of the present work is on the general
circulation induced by differential heating and cooling due to topographic effects. A
vertically uniform heating/cooling model is adequate for this purpose. Also, including
more general heating/cooling mechanisms generates further modelling issues that are
beyond the scope of the present work.

With the above assumptions and the Boussinesq approximation the equations of
motion are

Du

Dt
= − 1

ρ0

∂p

∂x
+ ν∇2u, (2.1)

Dw

Dt
= − 1

ρ0

∂p

∂z
+ ν∇2w + gα(T − T0), (2.2)

DT

Dt
= κ∇2T +

I0 cos(2πt/P )

ρ0CpHh(x/L)
, (2.3)

ux + wz = 0, (2.4)

where u and w are the horizontal and vertical velocities, p is the pressure perturbation,
T is the temperature, T0 is the reference temperature, ρ0 is the reference density, ν

is the viscosity, κ is the thermal diffusivity, g is acceleration due to gravity, α is
the thermal expansion coefficient and Cp is the specific heat of water. It is assumed
here that ν and κ are constant; however it is possible to have separate vertical and
horizontal eddy diffusivities and still make analytical progress.

It is assumed that all heat input/output is accounted for by the internal heating term
so all boundaries are taken to be insulated. Also, the bottom boundary z = −Hh(x/L)
is taken to be rigid and impermeable and the upper boundary z =0 is not disturbed
and stress free. These assumptions lead to the boundary conditions

uz = 0, w = 0, Tz = 0 on z = 0, (2.5)

u = w = 0, Ah′Tx + Tz = 0 on z = −Hh(x/L). (2.6)

At t = 0 when the heating is turned on, it is assumed that the fluid is isothermal and
at rest: T = T0 and u =w = 0 at t = 0.

Before analysing this model, the system of equations is non-dimensionalized. The
general geometry of the domain imposes no natural lengthscale. However, there
is a natural timescale for this model: t ∼ τ =P , the period of the forcing. From
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this, a vertical length can be constructed by considering the growth of a viscous
boundary layer at the near-horizontal rigid bottom boundary. This layer will grow
in thickness like

√
νt . Letting t = τ yields a vertical lengthscale z ∼ H =

√
νP . The

physical interpretation of this lengthscale is that it is the thickness to which a viscous
boundary layer will grow during one period of the diurnal forcing. If A is a scale
for the bottom slope of the domain then an appropriate horizontal lengthscale is
x ∼ L =H/A.

Balancing the unsteady and internal heating terms in the temperature equation
yields a scale for the temperature: T − T0 ∼ I0P/(ρ0Cp

√
νP ). Assuming a hydrostatic

balance and balancing unsteady inertia with the horizontal pressure gradient yields
pressure and horizontal velocity scales p ∼ gαI0P/Cp and u ∼ AGr

√
ν/P where Gr

is the Grashof number given by

Gr =
gα�T0H

3

ν2
=

gαI0P
2

ρ0Cpν
. (2.7)

Finally, the continuity equation yields a scale for the vertical velocity w ∼ A2Gr
√

ν/P .
Typical field values can calculated using the parameters of Monismith et al. (1990).

Using I0 = 103 Wm−2 and the usual values for the other parameters gives the Grashof
number ranging from Gr ≈ 107 for an eddy viscosity of ν = 10−4 to Gr ≈ 109 for
molecular values of ν. A typical bottom slope A ranges from 10−3 to 10−2.

The non-dimensional equations governing this system are then

ut + A2Gr(uux + wuz) = −px + A2uxx + uzz, (2.8)

wt + A2Gr(wux + wwz) = −pz/A
2 + A2wxx + wzz + T/A2, (2.9)

Tt + A2Gr(uTx + wTz) =
1

σ
(A2Txx + Tzz) +

1

h(x)
cos(2πt), (2.10)

ux + wz = 0, (2.11)

where σ = ν/κ is the Prandtl number and all variables are now non-dimensional. The
boundary conditions become

uz = w = Tz = 0 on z = 0, (2.12)

u = w = A2h′Tx + Tz = 0 on z = −h(x), (2.13)

and the initial conditions are u =w = T = p = 0.

3. Asymptotic solution
The system of equations (2.8)–(2.11) does not admit an analytical solution. However,

asymptotic solutions based on A � 1 can be found. The technique is similar to that of
Cormack, Stone & Leal (1974), Poulikakos & Bejan (1983) and FP93. The horizontal
velocity is expanded in the form

u(x, z, t) = u(0)(x, z, t) + A2u(2)(x, z, t) + · · · ,
with similar expansions for the other dependent variables. The solution procedure
consists of substituting these expansions into the equations above and then equating
like powers of A. The resulting system of linear equations can then be solved
recursively starting with the zeroth order in A. Each of these equations is a linear
PDE with z and t being the independent variables. The horizontal variable becomes
a parameter determining the local conditions (through h(x) and its derivatives). Even
though each equation in this system is linear the algebraic complexity increases



Convection over varying topography 5

dramatically as the order increases. Thus, only the O(A0) solution for u and the
O(A2) solution for T are found here.

3.1. Zero-order temperature

The O(A0) temperature equation expresses a simple balance between the internal
heating and the unsteady term. The boundary conditions are T (0)

z = 0 on z = 0, −h.
The solution is then

T (0) =
1

2πh(x)
sin(2πt). (3.1)

This solution appears as a forcing term in the horizontal momentum equation at zero
order and has period 1. Note that the heating is proportional to cos(2πt) while T (0)

is proportional to sin(2πt).

3.2. Zero-order velocity

The zero-order horizontal velocity equation is

u
(0)
t = −p(0)

x + u(0)
zz (3.2)

with boundary conditions u(0)
z =0 on z = 0 and u(0) = 0 on z = −h. Physically,

the unsteady temperature field induces a hydrostatic pressure field that drives a
circulation.

The solution procedure for this equation involves eliminating the pressure and
recasting the problem in terms of a streamfunction. The details are omitted; however
the solution for the horizontal velocity is

u(0) = − h′

96πh2
sin(2πt)(z + h)(8z2 + zh − h2)

− 2h′h

∞∑
n=1

cos βn + (cosβn − 1)
/
β2

n − 1
2

β3
n sin βn

(
α4

n + (2π)2
) (cos(αnz) − cos βn)

×
(
α2

n

(
cos(2πt) − exp

(
−α2

nt
))

+ 2π sin(2πt)
)

(3.3)

where βn are the positive roots of the equation βn = tan βn and αn = βn/h. The first
term of this solution can be obtained by assuming a viscous/buoyancy balance in
(3.2) and is the same (up to multiplication by a function of x and t) as that found in
Cormack et al. (1975).

3.3. Second-order temperature

The O(A2) temperature equation is

T
(2)
t =

1

σ
T (2)

zz +
1

σ
T (0)

xx − Gru(0)T (0)
x . (3.4)

This equation is a standard one-dimensional heat equation with two forcing terms.
The first of these represents a correction for horizontal conduction which is not
included in the O(A0) solution and the second term represents advection of T (0) by
u(0). There is no contribution from vertical advection since T (0) is independent of z.
The boundary conditions on T (2) are

T (2)
z = 0 on z = 0, (3.5)

T (2)
z = −h′T (0)

x on z = −h. (3.6)

The second of these boundary conditions is a correction to account for the non-zero
slope of the bottom boundary. The forcing terms involve infinite series which in turn
lead to a doubly infinite series solution for T (2). The solution is given in the Appendix.
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3.4. Advective heat transfer

The horizontal advective heat transfer per unit width is given by (in terms of
dimensionless variables)

Q = AGrI0(νP )1/2

∫ 0

−h

uT dz W m−1. (3.7)

The total heat transfer includes a conduction component which is negligible for the
small-A case considered here. In terms of the asymptotic solution above

Q = AGrI0(νP )1/2q + O(A5) (3.8)

where

q = A2

∫ 0

−h

u(0)T (2) dz. (3.9)

The zero-order temperature T (0) does not contribute to Q since it is independent of z.

3.5. Limiting cases

The asymptotic solutions given above include both unsteady inertia and viscous
effects. Neglecting one or other of these effects gives two limiting cases representing
either the viscous- or inertia-dominated case. Note that T (0) is the same for both
cases. Neglecting viscous and diffusive effects gives

u
(0)
i =

h′

4π2h

(
z

h
+

1

2

)
(1 − cos(2πt)) (3.10)

and

T
(2)
i =

Gr(h′)2

64π4h3

(
z

h
+

1

2

)
(3 − 4 cos(2πt) + cos(4πt)). (3.11)

Note that neither u
(0)
i nor T

(2)
i satisfy the boundary conditions at the top and bottom

of the domain. This is a consequence of neglecting viscosity and diffusion. The only
extra physics included in T

(2)
i is the advection of T (0) by u

(0)
i . The horizontal advective

heat transfer corresponding to the inviscid limit is

qi =
A2Gr(h′)3

6, 144π6h3
(10 − 15 cos(2πt) + 6 cos(4πt) − cos(6πt)). (3.12)

Neglecting unsteady inertia effects (and assuming diffusion dominates the heat
equation) yields

u(0)
ν = − h′h

96π

( z

h
+ 1

) (
8

(
z

h

)2

+
z

h
− 1

)
sin(2πt) (3.13)

and

T (2)
ν =

(h′)2 − hh′′

4σπ2h3
(1 − cos(2πt)) − (h′)2

4πh

((
z

h

)2

− 1

3

)
sin(2πt)

+
Grσ (h′)2h

23, 040π2

(
24

(
z

h

)5

+ 45

(
z

h

)4

− 30

(
z

h

)2

+ 5

)
(1 − cos(4πt)). (3.14)

Note that u(0)
ν is simply the first term of (3.3). The solution of T (2)

ν includes three terms
which represent respectively: a correction for horizontal conduction, a correction to
account for the sloping bottom (isotherms must be normal to the bottom) and
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advection of T (0) by u(0). The advection correction term has the same form as the
steady solution of Cormack et al. (1975). Only the last two terms contribute to the
horizontal advective heat transfer in this limit, which is given by

qν =
A2(h′)3h

5, 760π2
(1 − cos(4πt)) +

19A2Grσ (h′h)3

92, 897, 280π3
(3 sin(2πt) − sin(6πt)). (3.15)

4. Numerical solution
The asymptotic solution described above is only valid in a restricted region of

parameter space. Specifically, it requires A2 and A2Gr to be small. While the first of
these constraints is generally true for lakes the second is not. A numerical solution
of the full equations allows an examination of the parameter regime where the
asymptotic solution breaks down as well as validating the asymptotic solution where
it is expected to adequately describe the system.

For the numerical solution a linear bottom profile is assumed, i.e. h(x) = x. This
allows the governing equations to be recast into polar coordinates (r, θ) with the
upper and lower boundaries lying on coordinate lines. Extra boundaries need to be
added near the tip x =0 (at r = rmin) and at some distance from the tip (at r = rmax)
to keep the computational domain finite. The extra boundary at r = rmin is necessary
to allow the timestep to be sufficiently large without violating stability constraints
(see below). These near-vertical boundaries are not present in the model formulation
above so extra boundary conditions need to be specified. The temperature gradient
at each of these boundaries is set to match that of the zero-order solution above.
The boundaries are also taken to be rigid and non-slip. An alternative approach
would be to have open boundary conditions at r = rmin and r = rmax. This would
mean the numerical model would be closer to the analytical model above. However,
such boundary conditions cannot be achieved in the laboratory and the extra physics
associated with rigid boundary conditions is of interest.

The numerical method is a simple type scheme on a non-staggered mesh with
Leonard’s (1979) quick correction. The details of the method can be found in
Armfield (1991) and Farrow (1995). A number of simulations have been carried out
using different A, Gr and rmax. The non-uniform grid is typically 225×53 (for rmax = 6)
with extra points near solid boundaries to resolve viscous boundary layers. There is a
diffusive limit on the timestep set by the converging coordinate lines near x = 0 which
restricts the choice of both the position of the boundary there and the timestep. In the
simulations presented here, rmin = 0.4 and the timestep is 2.5 × 10−5. All simulations
here use σ =7.

5. Discussion
5.1. Preliminary remarks

The asymptotic solutions in § 3 allow for general topography. The discussion here
concentrates on the particular case h(x) = x, i.e. a triangular domain with a constant
bottom slope. This is also the topography used in the numerical simulations. The flow
development, at least for small A, is qualitatively the same for other topographies.
The asymptotic solutions depend principally on h and h′. The second derivative of
h appears only in the horizontal-conduction correction part of T (2) and thus plays a
minor role in the physics contained in the asymptotic solutions.
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Figure 2. Horizontal velocity profiles at x =5 at small times from the analytical (solid) and
numerical (dashed) results for A =0.1, Gr = 104 and rmax = 6. The straight lines are calculated
assuming a pure inertia balance.

It was pointed out in FP93 that for h = x the asymptotic solution fails near x =0.
This is because the horizontal diffusion term in (2.10) cannot be ignored as x → 0.
However, the region where horizontal diffusion is important is generally small. Using
the zero-order temperature to estimate the ratio of A2Txx/Tt shows that horizontal
diffusion is only important for x <A (FP93), which represents a very small part of
the domain of interest.

FP93 discuss in detail the behaviour of this system in the linear regime and their
results are summarized below. The discussion here concentrates on the additional
dynamics associated with nonlinear effects and the presence of the endwall at the
deep end of the domain.

5.2. The linear regime

The heating of the isothermal quiescent fluid begins at t = 0 which corresponds
to midday in the diurnal cycle. As heat is added to the system a horizontal
pressure gradient (proportional to sin 2πt) is established which favours a clockwise
(daytime) circulation. This circulation is initially in an inertia/buoyancy balance and

is represented well by (3.10). Note that u
(0)
i has a linear profile and does not satisfy the

upper and lower boundary conditions. Also, u
(0)
i ∝ t2 for small t and is unbounded as

x → 0. Figure 2 shows a number of velocity profiles at early times for h = x at x = 5
from the asymptotic and numerical results for A= 0.1 and Gr = 104. Also included
in that figure are the linear velocity profiles predicted by a pure inertia/buoyancy
balance. The agreement between the numerical and asymptotic results is excellent.
Away from the upper and lower boundaries, the results are also in agreement with
the inertia/buoyancy solution (3.10). There is a slight offset due to the asymmetry of
the boundary conditions. The velocity profiles diverge from linear near the upper and
lower boundaries where there are viscous boundary layers. The divergence is more
obvious near the lower boundary where there is a no-slip boundary condition. These
boundary layers grow in thickness like t1/2 (in dimensionless variables). Eventually,
the thickness of the boundary layers will be of the same order as the local depth. The
time this takes depends on the local depth and is given by tν ∼ x2. Mathematically,
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this is the e-folding time of the exponential terms in (3.3). Since the thickness of the
boundary layers is independent of the local depth there is always a region near x =0
where the local depth is less than the boundary layer thickness. Specifically, for x < t1/2

the boundary layers encompass the entire local depth. For x � 1, the flow will be in a
viscous/buoyancy balance in a time much shorter than the diurnal period. For x � 1,
the velocity profile is represented well by a viscous/buoyancy balance which is repres-
ented by the first term of (3.3). In this region u(0) ∝ t for small t and u(0) → 0 as x → 0.

In the absence of pronounced nonlinear effects, the established flow can be divided
into three regions (FP93): a shallow (x < 1) viscous-dominated region where the
circulation is in phase with the pressure-gradient forcing, a deep (x > 1) inertia-
dominated region where the circulation lags the forcing by one quarter of a period,
and an intermediate (x ∼ 1) region where the lag depends strongly on x. Over the
course of a diurnal cycle, the circulation in each region changes sign. In the shallow
viscous region the reversal happens nearly simultaneously over the entire depth. The
reversal in the transitional and inertia-dominated region is more complex. The pressure
gradient reverses simultaneously over the entire depth. The flow near the rigid bottom
boundary is dominated by viscous effects and is the first to respond to the reversed
pressure gradient. The interior inertia-dominated flow responds more slowly. This
leads to a complex circulation pattern as the flow reverses, with multilayer flow (FP93).

Note that u → 0 as x → 0, x → ∞ and t → 0. The linear results apply in each of these
limits. The range of validity of the linear results can be calculated by requiring that
terms omitted from the governing equations should be smaller than those that are
included. The maximum u is U ≈ 5 × 10−3. For x → 0, the main balance is between
buoyancy and vertical shear which gives x < 200/(A2Gr) as the linear region. For
x → ∞, the main balance is between buoyancy and inertia which gives x >A2Gr/200.
Combining these two results gives A2Gr < 200 for the flow in the entire domain to
be linear. Given the typical values for natural lakes given above, this condition is not
generally met in many natural lakes although there will be some regions where the
linear results will hold.

5.3. Nonlinear effects

As mentioned above, the asymptotic solution relies on small A2 and small A2Gr .
The second of these parameters is generally not small in natural lakes and represents
the importance of nonlinear effects (specifically advection) in the physics. From the
point of view of the initial value problem considered here, the first effect to emerge is
advection of temperature.

Figure 3 shows a series of snapshots of the temperature and streamfunction contours
at various times from the asymptotic results for A= 0.1 and Gr = 104. The effect
of advection on the temperature is evident from the tilting of the isotherms in
figure 3(a–e). In each case, advection has tilted the isotherms so as to set up a stable
(albeit weak) stratification. The corresponding circulation is shown in figure 3(f –j ).
Note that the asymptotic circulation shown here is driven entirely by the zero-order
temperature (3.1). The forcing due to the zero-order temperature changes sign at
t = 0.5 (figure 3b, g) and t =1 (figure 3d , i). At these times there is stable stratification
that was set up prior to the reversal of the pressure gradient. Even though the pressure
gradient driving the zero-order circulation vanishes at t = 0.5 and t =1 there is still
a substantial circulation in the deeper parts of the domain due to the inertia of the
existing flow. By t = 0.75, the pressure gradient has reversed the flow in the shallows
and in the bottom boundary layer (figure 3h) but there is still a region of clockwise
circulation in the interior.
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Figure 3. Series of snapshots of (a–e) temperature and (f –j ) streamfunction from the
asymptotic solution for h = x. The contour intervals are for (a–e) 0.005 and for (f –j ) 0.001.
Here, A = 0.1 and Gr = 104. The solid contour is the zero contour and the ‘C’ and ‘H’ symbols
indicate relatively cold and hot fluid respectively. (a,f ) t = 0.25; (b, g) t =0.5; (c, h) t = 0.75;
(d, i) t = 1; (e, j ) t = 1.25.

Figure 4 show a series of snapshots of the temperature and streamfunction contours
for the same parameter and times as figure 3 but now using the numerical results. The
two sets of results are generally in very good agreement except near the two endwalls
that are not present in the asymptotic results. The circulation is turned around in
a region near the endwall of width Armax = 0.6. This region will be dominated by
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Figure 4. As for figure 3 but now using numerical results with rmax = 6.

viscous effects which can be seen in figure 4(h) where the circulation reverses first in
response to a change in sign of the pressure gradient both in the shallows and near
the endwall. Note that the circulation magnitudes in the numerical results are slightly
smaller than for the asymptotic results (up to about 5% smaller in the shallows).
This is due to horizontal conduction (which is not included in the asymptotic results)
weakening the background temperature gradient in the numerical results.

The inclusion of nonlinear effects in the asymptotic solutions permits estimation of
horizontal advective heat transfer. This is zero at O(A0) since T (0) is independent of
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Figure 5. Time series of the horizontal advective heat transfer at x = 5 from the analytical
(solid), numerical (dashed with circles) and pure inertia (dot-dashed) results for the same
parameters as figure 3.

depth. Figure 5 shows a time series of the horizontal advective heat transfer at x = 5
from the numerical and asymptotic results. Also included is the asymptotic result qi

with viscous and diffusive effects neglected. As discussed above, for small times the
initial balance is between inertia and buoyancy. If this balance were maintained, the
heat transfer would never be negative, as indicated by qi . This is because there is no
reversal of the circulation in the inertia-dominated regime. There is a reversal of the
background temperature gradient T (0); however this does not give rise to a reversal of
T (2) as the time dependent term in (3.11) is greater than or equal to zero for all t � 0.

The agreement between the full asymptotic solution and the numerical solution
is very good for the times shown in figure 5. There is some discrepancy due to
processes, such as horizontal conduction, that are not included in the asymptotic
solution. Also, at x =5 the presence of the endwall at r = 6 is having some effect on
the numerical results. For small times, the asymptotic and numerical results are in
general agreement with the inviscid solution qi . However, the results diverge quite
quickly and by t = 0.5, qi has about twice the magnitude of the other results. This
is due to the growth of viscous boundary layers at the top and (especially) bottom
of the domain. In the inviscid solution (3.10)–(3.11) the greatest contribution to qi

occurs at the top and bottom of the domain. These two regions are also the first to
feel the effects of viscosity. Whereas in the inviscid solutions the maximum u

(0)
i and

T
(2)
i occur at z = −h, for the full solution u(0) = 0 at z = −h. At x = 5, the time to

reach the established (periodic) flow is t ∼ 10. However, the flow by t = 4 is close to
periodic with just a general increase in magnitude. Note that for x = 5, qν is over 300
times larger than qi . Thus qi provides a better estimate of the magnitude of q but it
does not take into account the effect of the boundary layer growth. Even though the
flow is dominated by the effects of inertia in the sense that the general circulation
lags the forcing, the heat transfer is strongly influenced by viscous effects.

Figure 6 shows a time series of the horizontal advective heat transfer at x = 1
from the asymptotic and numerical results. Also included is the viscous limit qν for
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Figure 6. Time series of the horizontal advective heat transfer at x = 1 from the analytical
(solid), numerical (dashed with circles) and viscous-dominated (dot-dashed) results for the
same parameters as figure 3.

comparison. Even at x = 1, there are some inertia effects at small times. However,
by t = 2, an established periodic structure has emerged which agrees remarkably well
with the viscous-dominated result. Note that at x =1 and with these parameter values,
the main contribution to qν is from the second term in (3.15). In the viscous regime
the advection correction term of qν (the term proportional to Gr) has extrema at
t = n ± 1/4. This corresponds precisely with the extrema of u(0)

ν as would be expected
since the viscous-dominated regime can be viewed as a modulated steady state. Both
the asymptotic and numerical results slightly lag qν due to the effects of inertia.

5.4. Effects of the endwall

There is a near vertical solid wall at r = rmax in the numerical results that is not
present in the asymptotic results. The presence of the endwall introduces additional
physical effects that are not and cannot be captured by the asymptotic results above.
Mathematically, the derivatives of h(x) are no longer bounded. The first feature to
appear is a viscous boundary layer on the endwall where streamlines emerging from
the interior flow close (streamlines continue to infinity in the asymptotic model, see
figure 3). For small A, the effect of the endwall is limited to a region of width Armax,
at least for small times. In this case, the endwall region is akin to the end regions in
the steady-state solutions of Cormack et al. (1974). In that work the core flow was
driven by thermal boundary conditions on the vertical walls. This meant that it was
necessary to solve for the flow in the end regions. This is not necessary here since the
flow is driven by a pressure gradient induced by the thermal forcing interacting with
the topography.

A more interesting effect of the endwall that leads to a significant modification of
the flow in the interior of the cavity occurs when the flow is nonlinear. If advection
is sufficiently strong a slug of warm water will emerge from the shallows during the
initial heating phase. This slug of warm water moves across the surface from the
relatively intensely heated shallows into the deeper regions where the heating/cooling
is much less intense. This means that the slug of warm water remains at nearly
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Figure 7. Series of snapshots of (a–e) temperature and (f –j ) streamfunction from the
asymptotic solution for h = x at around the time that the warm surface current hits the
endwall. The contour intervals are for (a–e) 0.05 and for (f –j ) 0.001. Here, A = 0.1, Gr = 106,
rmax = 6 and σ = 7. The solid contour is the zero contour. (a, g) t = 0.275; (b, h) t =0.3;
(c, i) t = 0.325; (d, j ) t = 0.35; (e, k) t = 0.375; (f, l) t = 0.4.

the same temperature as it traverses the cavity. Eventually, the slug of warm water
impacts the endwall in a manner similar to that observed in the differentially heated
cavity (Patterson & Armfield 1990) or heated triangular cavity (Lei & Patterson 2002).

Figure 7 shows a number of snapshots of the temperature and streamfunction from
the numerical results for A= 0.1, Gr =106 and rmax = 6 around the time that the
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warm surface flow arrives at the endwall at rmax = 6 (which occurs at t ≈ 0.28). Note
that for the linear response discussed above there is a daytime temperature structure
until t =0.5. Thus warm water continues to leave the shallows after the initial ejection
and forms a thin and warm surface layer (figure 7a). Shortly after the warm fluid
has been carried down the endwall by the general circulation (figure 7b) its buoyancy
generates a reversal in the circulation at the endwall (figure 7c, i). This reversal then
propagates as an internal wave back towards the shallows (figure 7d–f , j–l). Since
heat is carried away from the shallows in the surface flow the cooling in the shallows
leads to an earlier reversal of the horizontal pressure gradient than occurs in the
linear regime. This is evident in figure 7(l) (t =0.4) where there is a small cell with
an anticlockwise circulation near the shallow end of the cavity. In the linear regime
this reversal does not occur until t = 0.5. The reversal of the horizontal temperature
gradient in the shallows can be seen in figure 7(f ).

The next significant event is the ejection of a cold slug of fluid from the shallows
which then travels as a gravity current down the sloping bottom. Figure 8 shows a
number of snapshots of the temperature and streamfunction as the gravity current
travels through the cavity. Note that the initial reversal of daytime pattern occurred
in the shallows at t ≈ 0.4. The gravity current travels down the sloping bottom in
a similar way to the warm surface fluid mentioned above. However, the cold fluid
travels more quickly despite the temperature anomaly being approximately the same
as for the warm surface flow. This is because the cold fluid is losing potential energy
as it travels down the slope. The steepening gradients of the streamfunction near the
bottom boundary evident in figure 8(g–i) indicate that the gravity current accelerates
as it travels down the slope. When the gravity current arrives at the endwall it is
turned upward. The subsequent flow in the end region is significantly more vigorous
than the corresponding flow when the warm surface current reaches the endwall. The
upflow in the end region is sufficiently strong for cold fluid in the gravity current to
reach the surface (figure 8f ). In a similar way to the warm surface flow, the cold
bottom flow leads to a stratification near the bottom (figure 8f ). The gravity current
hitting the endwall also leads to internal waves propagating back towards the tip.

Both the warm surface flow and cold bottom flow lead to a permanently stratified
interior which supports internal wave activity during the diurnal cycle. During each
cycle new surface and bottom flows strengthen and maintain the stratification. The
stratification is established in the deeper parts by the cavity ‘filling up’ with fluid
ejected from the tip. This is similar to the filling process for a differentially heated
cavity (Patterson & Imberger 1980). Eventually, the system reaches a balance where
the warm/cold fluid generated in the shallows during each cycle barely has enough
buoyancy anomaly to travel into the deeper parts of the cavity. The flow is sufficient
to maintain rather than strengthen the stratification. At this time, the deep region
of the cavity has a permanent stratification of fixed (in non-dimensional variables)
strength. This is similar to one of the possible steady states for a differentially heated
rectangular cavity described by Patterson & Imberger (1980). The steady state consists
of a stratified interior with the stratification maintained by warm and cold fluid ejected
from the vertical boundary layers.

For the present case, the timescale for the setting up of the stratified deep region
depends on the size of the cavity and the nonlinearity parameter A2Gr . A crude
estimate of this timescale can be calculated by considering the volume of fluid ejected
from the shallows during one nighttime cycle and using this to estimate a filling
time for the deep part of the domain. From the asymptotic solution, the maximum
(non-dimensional) velocity is approximately 4 × 10−3 and this occurs at x ≈ 2. The
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Figure 8. Series of snapshots of (a–e) temperature and (f –j ) streamfunction from the
asymptotic solution for h = x showing the cold gravity current flowing down the slope. The
contour intervals are for (a–e) 0.05 and for (f –j ) 0.001. The parameters are as for figure 7. The
solid contour is the zero contour. (a, g) t = 0.55; (b, h) t = 0.575; (c, i) t = 0.6; (d, j ) t = 0.625;
(e, k) t = 0.65; (f, l) t = 0.675.

volume of fluid ejected by the shallows over one nighttime cycle is then approximately
2 × 10−3A2Gr . Half the volume of the cavity is approximately r2

max/4. Thus the time
taken for the stratification to form in the deep region due to this filling box process
is tfill = 125r2

max/A
2Gr .
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Figure 9. Snapshots of the temperature field at t =8 with A = 0.1, rmax = 6 and σ = 7 from
(a) asymptotic results with Gr =104, (b) numerical results with Gr = 104, (c) numerical results
with Gr = 105 and (d) numerical results with Gr =106. The contour intervals are for (a, b)
0.005 and for (c, d) 0.05.

Figure 9 shows temperature contours at t =8 from the asymptotic and numerical
results for different values of Gr for A= 0.1 and rmax = 6. At t = 8 the average
temperature in the cavity is zero. Figures 9(a) and 9(b) are for Gr = 104 from the
asymptotic and numerical results respectively. For Gr = 104, tfill = 45 which is much
longer than t = 8. Note that the stratification process discussed above is cumulative
over successive diurnal cycles. For example, cool water carried out from the shallows
moves into a region where the heating/cooling and circulation is less intense. This
means that over the course of a diurnal cycle the reversed flow will not carry it back
into the shallows. This hysteresis effect is not captured by the O(A2) temperature which
is purely periodic. In figure 9(a) the temperature structure is close to symmetrical
about the zero contour. This is in contrast to figure 9(b) from the numerical results
where there is a clear asymmetry about the zero contour since the cold bottom
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Run A Gr A2Gr rmax tfill �T

1 0.1 105 1 × 103 6 4.5 0.1017
2 0.1 106 1 × 104 6 0.45 0.1458
3 0.02 2.5 × 106 1 × 103 6 4.5 0.1017
4 0.25 105 6.25 × 103 6 0.72 0.1615
5 0.25 2 × 104 1.25 × 103 6 3.6 0.1485
6 0.1 106 1 × 104 4 0.2 0.1234
7 0.1 106 1 × 104 8 0.8 0.1524

Table 1. Summary of stratification strength at t = 8 from the numerical results for various
parameters. For the last column, �T is the top to bottom temperature difference at r = rmax.

current is generally stronger than the warm surface current. Figure 9(c) shows the
temperature structure at t = 8 from the numerical results for Gr = 105 for which
tfill = 4.5. Here, the stratification in the deeper parts has been established; however
there is still some basin-scale internal wave activity associated with the warm and cold
currents emanating from the shallows. Figure 9(d) shows the temperature structure
at t =8 for Gr =106 for which tfill = 0.45. Here, the stratification establishes in a
time comparable to the diurnal period. By t = 8 the internal wave activity evident in
figures 7 and 8 has died away and there is very little motion in the deep part of the
cavity. In fact, the temperature field in the deep part of the cavity is close to steady
with a barely perceptible change during the diurnal cycle.

Note that the (dimensionless) temperature difference from top to bottom in the
deep part of the cavity is nearly the same for figures 9(c) and 9(d) despite the order
of magnitude difference in Gr . This is because the strength of the stratification is
set by the temperature of the fluid ejected from the tip during the diurnal cycle.
Table 1 summarizes the vertical temperature difference at t = 8 in the deep part of
the cavity for a range of values for A, Gr and rmax. All simulations have tfill < 8. The
vertical temperature difference ranges from 0.1017 to 0.1615. The smaller number
corresponds to cases where tfill = 4.5 (Runs 1 and 3). A closer examination of these
runs shows that there is still some basin-scale internal wave activity at t = 8 so the
stratification in the deep regions has not yet settled down. Ignoring those two runs,
the average �T is 0.1463 with all values being within 26% of this value despite the
much larger variation in the input parameters. This reinforces the result that the
long-term stratification strength in the deep part of the domain depends primarily on
the behaviour in the shallows.

These results can be used to estimate the deep-region stratification strength in
natural lakes due to this process. Using I0 = 103 Wm−2 and the usual values for the
other parameters gives �T ranging from 10 ◦C for molecular values for ν to 1 ◦C for an
eddy viscosity of ν = 10−4 m2 s−1. The observations of Monismith et al. (1990) show a
semi-permanent stratification in a reservoir sidearm of 2 ◦C or 3 ◦C which is consistent
with the present results. The corresponding circulation velocities range from ∼1 cm s−1

to ∼ 10 cm s−1 which is also consistent with the field observations of Monismith et al.
(1990). It is difficult to have a more detailed comparison since the field results are
influenced by wind and more complicated heating/cooling mechanisms.

6. Conclusions
This paper has formulated a model for periodically (in time) forced natural

convection of a fluid over varying bathymetry. This models the diurnal heating/cooling
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cycle in lakes with differential heating/cooling associated with variable depth. The
model is analysed using asymptotic methods based on a small characteristic bottom
slope and numerically using a simple type algorithm for a particular geometry. The
asymptotic results provide an adequate description of the flow so long as the degree
of nonlinearity in the dynamics is weak. In this case, the flow response consists of
viscous-dominated flow in the shallows with the flow response being in phase with
the forcing and an unsteady inertia-dominated flow in the deeper parts where the
response lags the forcing. The characteristics of these two regions is captured by two
limiting cases of the model. The asymptotic results predict a relatively weak stable
thermal stratification set up by advection and this prediction is borne out by the
numerical solution of the full equations for the weakly nonlinear case.

When nonlinear effects become stronger the presence of vertical boundaries has
a significant effect on the flow. In particular, for the triangular geometry, surface
and gravity currents emanating from the shallow regions are stopped from travelling
to infinity and eventually pool in the deeper parts of the domain. The resultant
stable stratification can support internal wave activity generated by gravity and
surface currents hitting the endwall. Eventually, the stratification reaches a maximum
strength and (in terms of the non-dimensional variables) this is largely independent
of both the size of the domain and the degree of nonlinearity. The timescale for the
setting up of the stratification decreases as nonlinear effects increase in importance
and can be less than the period of the forcing.

There are a number of avenues for further work, especially additional numerical
modelling. The modelling here is for one particular geometry. It would be interesting
to investigate more general geometries numerically in the nonlinear regime to further
examine the stratification process for unsteady forcing. There is also the issue of
using open boundary conditions. It was mentioned in § 2 that the vertically uniform
heating/cooling is a simplification of the mechanisms operating in natural lakes.
Although the daytime heating and nighttime cooling scenarios have been separately
considered, there appears to be no analytical or numerical investigation of a more
realistic combined model for the diurnal heating/cooling cycle. Finally, the simulations
reported here are for Gr at the lower end of values for natural lakes. Examination
of the flow for higher Gr is necessary for a more detailed comparison to natural
lakes.

The author is grateful to S. Brown and the anonymous referees who made useful
comments on earlier versions of this manuscript. This research was supported by the
Australian Research Council Large Grant Scheme.

Appendix. The second-order temperature T (2)

To facilitate the solution, T (2) is written as T (2) = T
(2)
cond + T

(2)
adv where T

(2)
cond is the

correction due to horizontal conduction and proper matching of the lower boundary
condition and T

(2)
adv is the correction due to advection. The conduction solution is

T
(2)
cond =

1 − cos(2πt)

4π2σh3
(h′2 − hh′′) − h′2

πh3

∞∑
n=1

(−1)n cos

(
nπz

h

)

× (nπ/h)2 sin(2πt) + 2πσ [exp(−(nπ/h)2t/σ ) − cos(2πt)]

(nπ/h)2 + (2πσ )2
. (A 1)
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The advection solution can be written as

T
(2)
adv = Grσhh′2

∞∑
m=1

am(t)

(
cos

mπz

h

)
(A 2)

where

am(t) =
8(1 − (−1)m) + (−1)m(mπ)2

4π2(mπ)6(m4π2 + 16h4σ 2)

×
[
m4π2

8
(1 − cos(4πt)) − 1

2
πh2σm2 sin(4πt) + 2h4σ 2

(
1 − e−(mπ/h)2t/σ

)]

+
4(−1)m

π

∞∑
n=1

cos βn + (cos βn − 1)
/
β2

n − 1
2

β2
n

(
(mπ)2 − β2

n

)
((βn/h)4 + 4π2)

bmn(t) (A 3)

where

bmn(t) =

(
βn

h

)2
(

h2σ
(
e−(mπ/h)2t/σ − cos(4πt)

)
+ 1

4
m2π sin(4πt)

π(m4π2 + 16h4σ 2)

−
πh2σ

(
e−(mπ/h)2t/σ − e−(βn/h)2t cos(2πt)

)
+ 1

2

(
m2π2 − β2

nσ
)
e−(βn/h)2t sin(2πt)(

(mπ)2 − β2
nσ

)2
+ 4π2h4σ 2

)

− π
1
2
m4π2(cos(4πt) − 1) + 2πh2σm2 sin(4πt) + 8h4σ 2

(
e−(mπ/h)2t/σ − 1

)
(mπ)2(m4π2 + 16h4σ 2)

. (A 4)

Note that T
(2)
adv includes terms proportional to cos(4πt) and sin(4πt) which arise from

the nonlinear combination of longer-period terms in the forcing.
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